Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 71
1.
Sci Rep ; 14(1): 8379, 2024 04 10.
Article En | MEDLINE | ID: mdl-38600116

Macrophage responses to activation are fluid and dynamic in their ability to respond appropriately to challenges, a role integral to host defence. While bacteria can influence macrophage differentiation and polarization into pro-inflammatory and alternatively activated phenotypes through direct interactions, many questions surround indirect communication mechanisms mediated through secretomes derived from gut bacteria, such as lactobacilli. We examined effects of secretome-mediated conditioning on THP-1 human monocytes, focusing on the ability of the Lacticaseibacillus rhamnosus R0011 secretome (LrS) to drive macrophage differentiation and polarization and prime immune responses to subsequent challenge with lipopolysaccharide (LPS). Genome-wide transcriptional profiling revealed increased M2-associated gene transcription in response to LrS conditioning in THP-1 cells. Cytokine and chemokine profiling confirmed these results, indicating increased M2-associated chemokine and cytokine production (IL-1Ra, IL-10). These cells had increased cell-surface marker expression of CD11b, CD86, and CX3CR1, coupled with reduced expression of the M1 macrophage-associated marker CD64. Mitochondrial substrate utilization assays indicated diminished reliance on glycolytic substrates, coupled with increased utilization of citric acid cycle intermediates, characteristics of functional M2 activity. LPS challenge of LrS-conditioned THP-1s revealed heightened responsiveness, indicative of innate immune priming. Resting stage THP-1 macrophages co-conditioned with LrS and retinoic acid also displayed an immunoregulatory phenotype with expression of CD83, CD11c and CD103 and production of regulatory cytokines. Secretome-mediated conditioning of macrophages into an immunoregulatory phenotype is an uncharacterized and potentially important route through which lactic acid bacteria and the gut microbiota may train and shape innate immunity at the gut-mucosal interface.


Lacticaseibacillus rhamnosus , Monocytes , Humans , Monocytes/metabolism , Secretome , Lipopolysaccharides , Cytokines/metabolism , Chemokines/metabolism , Immunity
2.
Mol Nutr Food Res ; 68(7): e2300770, 2024 Apr.
Article En | MEDLINE | ID: mdl-38522032

SCOPE: Gastro-AD (GAD) is a soy flour derived product that undergoes an industrial fermentation with Lactobacillus delbrueckii R0187 and has demonstrated clinical effects in gastroesophageal reflux and peptic ulcer symptom resolution. The aim of this study is to describe and link GAD's metabolomic profile to plausible mechanisms that manifest and explain the documented clinical outcomes. METHODS AND RESULTS: 1H NMR spectroscopy with multivariate statistical analysis is used to characterize the prefermented soy flour and GAD products. The acquired spectra are screened using various resources and the molecular assignments are confirmed using total correlation spectroscopy (TOCSY). Peaks corresponding to different metabolites are integrated and compared between the two products for relative changes. HPLC and GC are used to quantify some specific molecules. NMR analyses demonstrate significant changes in the composition of various assigned bioactive moieties. HPLC and GC analysis demonstrate deglycation of isoflavones after fermentation, resulting in estrogenically active secondary metabolites that have been previously shown to help to reduce inflammation. CONCLUSION: The identification of bioactive molecules, such as genistein and SCFAs, capable of modulating anti-inflammatory signaling cascades in the stomach's gastric and neuroendocrine tissues can explain the reported biological effects in GAD and is supported by in vivo data.


Genistein , Isoflavones , Genistein/metabolism , Isoflavones/metabolism , Dietary Supplements , Fermentation
3.
BMC Gastroenterol ; 24(1): 4, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38166769

BACKGROUND: Healthy individuals may experience increases in intestinal permeability after chronic or acute use of non-steroidal anti-inflammatory drugs, which may be attenuated by probiotics. This study investigates the effects of an acute aspirin challenge on gastroduodenal barrier function with or without prophylactic probiotic consumption. METHODS: Twenty-nine generally healthy participants (26 ± 6 years) completed a 14-week randomized, double-blind, crossover trial. A probiotic containing 2 Lactobacilli strains or placebo was administered for 3 weeks, with a 4-week washout period between crossover phases. Daily and weekly questionnaires assessing gastrointestinal function were completed for 2 weeks before until 2 weeks after each intervention to assess gastrointestinal function. Gastroduodenal permeability was assessed by urinary excretion of orally administered sucrose after 1, 2, and 3 weeks of each intervention with a 1950 mg-aspirin challenge after 2 weeks of supplementation. Stool samples were collected weekly during supplementation for detection of species of interest. RESULTS: Gastroduodenal permeability increased with aspirin challenge (Week 1: 3.4 ± 0.6 µmol vs Week 2: 9.9 ± 1.0 µmol urinary sucrose; p < 0.05). There were no differences in the change in permeability after the aspirin challenge or gastrointestinal function between interventions. CONCLUSION: The acute aspirin challenge significantly increased intestinal permeability similarly in both groups, and prophylactic probiotic consumption was unable to prevent the loss in this particular model.


Aspirin , Probiotics , Adult , Humans , Intestinal Barrier Function , Probiotics/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal , Sucrose/urine , Double-Blind Method
4.
mSystems ; 8(4): e0043123, 2023 08 31.
Article En | MEDLINE | ID: mdl-37462361

The interplay between the intestinal microbiota and host is critical to intestinal ontogeny and homeostasis. MicroRNAs (miRNAs) may be an underlying link. Intestinal miRNAs are microbiota-dependent and, when shed in the lumen, affect resident microorganisms. Yet, longitudinal relationships between intestinal tissue miRNAs, luminal miRNAs, and luminal microorganisms have not been elucidated, especially in early life. Here, we investigated the postnatal cecal miRNA and microbiota populations, their relationship, and their impact on intestinal maturation in specific pathogen-free mice; we also assessed if they can be modified by intervention with allochthonous probiotic lactobacilli. We report that cecal and cecal content miRNA and microbiota signatures are temporally regulated, correlated, and modifiable by probiotics with implications for intestinal maturation. These findings help understand causal relationships within the gut ecosystem and provide a basis for preventing and managing their alterations in diseases throughout life. IMPORTANCE The gut microbiota affects intestinal microRNA (miRNA) signatures and is modified by host-derived luminal miRNA. This suggests the existence of close miRNA-microbiota relationships that are critical to intestinal homeostasis. However, an integrative analysis of these relationships and their evolution during intestinal postnatal maturation is lacking. We provide a system-level longitudinal analysis of miRNA-microbiota networks in the intestine of mice at the weaning transition, including tissue and luminal miRNA and luminal microbiota. To address causality and move toward translational applications, we used allochthonous probiotic lactobacilli to modify these longitudinal relationships and showed that they are critical for intestinal maturation in early life. These findings contribute to understand mechanisms that underlie the maturation of the intestinal ecosystem and suggest that interventions aiming at maintaining, or restoring, homeostasis cannot prescind from considering relationships among its components.


Gastrointestinal Microbiome , MicroRNAs , Microbiota , Mice , Animals , MicroRNAs/genetics , Lactobacillus/genetics , Gastrointestinal Microbiome/genetics , Growth and Development
5.
Epilepsia ; 64(8): e177-e183, 2023 08.
Article En | MEDLINE | ID: mdl-37335622

We have shown previously that the ketogenic diet (KD) is effective in reducing seizures associated with infantile spasms syndrome (ISS) and that this benefit is related to alterations in the gut microbiota. However, it remains unclear whether the efficacy of the KD persists after switching to a normal diet. Employing a neonatal rat model of ISS, we tested the hypothesis that the impact of the KD would diminish when switched to a normal diet. Following epilepsy induction, neonatal rats were divided into two groups: continuous KD for 6 days; and a group fed with KD for 3 days and then a normal diet for 3 days. Spasms frequency, mitochondrial bioenergetics in the hippocampus, and fecal microbiota were evaluated as major readouts. We found that the anti-epileptic effect of the KD was reversible, as evidenced by the increased spasms frequency in rats that were switched from the KD to a normal diet. The spasms frequency was correlated inversely with mitochondrial bioenergetic function and a set of gut microbes, including Streptococcus thermophilus and Streptococcus azizii. These findings suggest that the anti-epileptic and metabolic benefits of the KD decline rapidly in concert with gut microbial alterations in the ISS model.


Diet, Ketogenic , Epilepsy , Gastrointestinal Microbiome , Spasms, Infantile , Rats , Animals , Seizures , Spasms, Infantile/drug therapy , Anticonvulsants/therapeutic use , Spasm
6.
Neurogastroenterol Motil ; 35(10): e14629, 2023 10.
Article En | MEDLINE | ID: mdl-37357378

BACKGROUND: An emerging strategy to treat symptoms of gastrointestinal (GI) dysmotility utilizes the administration of isolated bacteria. However, the underlying mechanisms of action of these bacterial agents are not well established. Here, we elucidate a novel approach to promote intestinal motility by exploiting the biochemical capability of specific bacteria to produce the serotonin (5-HT) precursor, tryptophan (Trp). METHODS: Mice were treated daily for 1 week by oral gavage of Bacillus (B.) subtilis (R0179), heat-inactivated R0179, or a tryptophan synthase-null strain of B. subtilis (1A2). Tissue levels of Trp, 5-HT, and 5-hydroxyindoleacetic acid (5-HIAA) were measured and changes in motility were evaluated. KEY RESULTS: Mice treated with B. subtilis R0179 exhibited greater colonic tissue levels of Trp and the 5-HT breakdown product, 5-HIAA, compared to vehicle-treated mice. Furthermore, B. subtilis treatment accelerated colonic motility in both healthy mice as well as in a mouse model of constipation. These effects were not observed with heat-inactivated R0179 or the live 1A2 strain that does not express tryptophan synthase. Lastly, we found that the prokinetic effects of B. subtilis R0179 were blocked by coadministration of a 5-HT4 receptor (5-HT4 R) antagonist and were absent in 5-HT4 R knockout mice. CONCLUSIONS AND INFERENCES: Taken together, these data demonstrate that intestinal motility can be augmented by treatment with bacteria that synthesize Trp, possibly through increased 5-HT signaling and/or actions of Trp metabolites, and involvement of the 5-HT4 R. Our findings provide mechanistic insight into a transient and predictable bacterial strategy to promote GI motility.


Tryptophan Synthase , Tryptophan , Mice , Animals , Tryptophan/pharmacology , Serotonin/metabolism , Hydroxyindoleacetic Acid , Tryptophan Synthase/pharmacology , Gastrointestinal Motility , Mice, Knockout , Bacteria
7.
Int J Mol Sci ; 24(8)2023 Apr 15.
Article En | MEDLINE | ID: mdl-37108487

Growing evidence indicates that non-antibiotic therapeutics significantly impact human health by modulating gut microbiome composition and metabolism. In this study, we investigated the impact of two psychotropic drugs, aripiprazole and (S)-citalopram, on gut microbiome composition and its metabolic activity, as well as the potential of probiotics to attenuate related dysbiosis using an ex vivo model of the human colon. After 48 h of fermentation, the two psychotropics demonstrated distinct modulatory effects on the gut microbiome. Aripiprazole, at the phylum level, significantly decreased the relative abundances of Firmicutes and Actinobacteria, while increasing the proportion of Proteobacteria. Moreover, the families Lachnospiraceae, Lactobacillaceae, and Erysipelotrichaceae were also reduced by aripiprazole treatment compared to the control group. In addition, aripiprazole lowered the levels of butyrate, propionate, and acetate, as measured by gas chromatography (GC). On the other hand, (S)-citalopram increased the alpha diversity of microbial taxa, with no differences observed between groups at the family and genus level. Furthermore, a probiotic combination of Lacticaseibacillus rhamnosus HA-114 and Bifidobacterium longum R0175 alleviated gut microbiome alterations and increased the production of short-chain fatty acids to a similar level as the control. These findings provide compelling evidence that psychotropics modulate the composition and function of the gut microbiome, while the probiotic can mitigate related dysbiosis.


Gastrointestinal Microbiome , Probiotics , Humans , Dysbiosis/microbiology , Aripiprazole/pharmacology , Citalopram/pharmacology , Citalopram/therapeutic use , Probiotics/pharmacology , Probiotics/therapeutic use , Colon , Psychotropic Drugs/pharmacology
8.
J Neurogastroenterol Motil ; 29(2): 218-228, 2023 Apr 30.
Article En | MEDLINE | ID: mdl-37019866

Background/Aims: Motility, stool characteristics, and microbiota composition are expected to modulate probiotics' passage through the gut but their effects on persistence after intake cessation remain uncharacterized. This pilot, open-label study aims at characterizing probiotic fecal detection parameters (onset, persistence, and duration) and their relationship with whole gut transit time (WGTT). Correlations with fecal microbiota composition are also explored. Methods: Thirty healthy adults (30.4 ± 13.3 years) received a probiotic (30 × 109 CFU/capsule/day, 2 weeks; containing Lactobacillus helveticus R0052, Lacticaseibacillus paracasei HA-108, Bifidobacterium breve HA-129, Bifidobacterium longum R0175, and Streptococcus thermophilus HA-110). Probiotic intake was flanked by 4-week washout periods, with 18 stool collections throughout the study. WGTT was measured using 80% recovery of radio-opaque markers. Results: Tested strains were detected in feces ~1-2 days after first intake and persistence after intake cessation was not significantly different for R0052, HA-108, and HA-129 (~3-6 days). We identified 3 WGTT subgroups within this population (named Fast, Intermediate, and Slow), which could be classified by machine learning with high accuracy based on differentially abundant taxa. On average, R0175 persisted significantly longer in the intermediate WGTT subgroup (~8.5 days), which was mainly due to 6 of the 13 Intermediate participants for whom R0175 persisted ≥ 15 days. Machine learning classified these 13 participants according to their WGTT cluster (≥ 15 days or < 5 days) with high accuracy, highlighting differentially abundant taxa potentially associated with R0175 persistence. Conclusion: These results support the notion that host-specific parameters such as WGTT and microbiota composition should be considered when designing studies involving probiotics, especially for the optimization of washout duration in crossover studies but also for the definition of enrollment criteria or supplementation regimen in specific populations.

9.
Nutrients ; 15(2)2023 Jan 04.
Article En | MEDLINE | ID: mdl-36678133

Microbiota studies have dramatically increased over these last two decades, and the repertoire of microorganisms with potential health benefits has been considerably enlarged. The development of next generation probiotics from new bacterial candidates is a long-term strategy that may be more efficient and rapid with discriminative in vitro tests. Streptococcus strains have received attention regarding their antimicrobial potential against pathogens of the upper and, more recently, the lower respiratory tracts. Pathogenic bacterial strains, such as non-typable Haemophilus influenzae (NTHi), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus), are commonly associated with acute and chronic respiratory diseases, and it could be interesting to fight against pathogens with probiotics. In this study, we show that a Streptococcus mitis (S. mitis) EM-371 strain, isolated from the buccal cavity of a human newborn and previously selected for promising anti-inflammatory effects, displayed in vitro antimicrobial activity against NTHi, P. aeruginosa or S. aureus. However, the anti-pathogenic in vitro activity was not sufficient to predict an efficient protective effect in a preclinical model. Two weeks of treatment with S. mitis EM-371 did not protect against, and even exacerbated, NTHi lung infection.


Pneumonia , Respiratory Tract Infections , Staphylococcal Infections , Infant, Newborn , Humans , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology , Staphylococcus aureus , Streptococcus mitis , Bacteria , Haemophilus influenzae , Anti-Bacterial Agents/pharmacology , Lung
10.
Autophagy ; 19(7): 2094-2110, 2023 07.
Article En | MEDLINE | ID: mdl-36708254

Mitochondrial impairment is a hallmark feature of neurodegenerative disorders, such as Parkinson disease, and PRKN/parkin-mediated mitophagy serves to remove unhealthy mitochondria from cells. Notably, probiotics are used to alleviate several symptoms of Parkinson disease including impaired locomotion and neurodegeneration in preclinical studies and constipation in clinical trials. There is some evidence to suggest that probiotics can modulate mitochondrial quality control pathways. In this study, we screened 49 probiotic strains and tested distinct stages of mitophagy to determine whether probiotic treatment could upregulate mitophagy in cells undergoing mitochondrial stress. We found two probiotics, Saccharomyces boulardii and Lactococcus lactis, that upregulated mitochondrial PRKN recruitment, phospho-ubiquitination, and MFN degradation in our cellular assays. Administration of these strains to Drosophila that were exposed to paraquat, a mitochondrial toxin, resulted in improved longevity and motor function. Further, we directly observed increased lysosomal degradation of dysfunctional mitochondria in the treated Drosophila brains. These effects were replicated in vitro and in vivo with supra-physiological concentrations of exogenous soluble factors that are released by probiotics in cultures grown under laboratory conditions. We identified methyl-isoquinoline-6-carboxylate as one candidate molecule, which upregulates mitochondrial PRKN recruitment, phospho-ubiquitination, MFN degradation, and lysosomal degradation of damaged mitochondria. Addition of methyl-isoquinoline-6-carboxylate to the fly food restored motor function to paraquat-treated Drosophila. These data suggest a novel mechanism that is facilitated by probiotics to stimulate mitophagy through a PRKN-dependent pathway, which could explain the potential therapeutic benefit of probiotic administration to patients with Parkinson disease.


Lactococcus lactis , Parkinson Disease , Saccharomyces boulardii , Animals , Mitophagy , Lactococcus lactis/metabolism , Saccharomyces boulardii/metabolism , Protein Kinases/metabolism , Autophagy , Paraquat , Ubiquitin-Protein Ligases/metabolism , Drosophila/metabolism
11.
Nutr Neurosci ; 26(7): 667-679, 2023 Jul.
Article En | MEDLINE | ID: mdl-35714163

Background: Gut microbiota has emerged as a modifiable factor influencing obesity and metabolic diseases. Interventions targeting this microbial community could attenuate biological and psychological comorbidities of excess weight. Objective: Our aim was to determine if Lacticaseibacillus rhamnosus HA-114 supplementation accentuated beneficial impact of weight loss on metabolic and cognitive health. Methods: This 12-week randomized, double-blind, placebo-controlled trial assessed biological markers of energy metabolism, eating behaviors and mood-related factors in 152 adults with overweight receiving L. rhamnosus HA-114 supplementation or placebo, that were also on a dietary intervention inducing a controlled weight loss. Results: Although probiotic supplementation did not potentiate the reduction in body weight or fat mass, a significant decrease in plasma insulin, HOMA-IR, LDL-cholesterol and triglycerides was observed in the probiotic-supplemented group only. With respect to eating behaviors and mood-related factors, beneficial effects were either observed only in the group receiving probiotic supplementation or were significantly greater in this group, including decrease in binge eating tendencies, disinhibition and food-cravings. Conclusion: This study demonstrates the clinical relevance of probiotic supplementation to induce beneficial metabolic and psychological outcomes in individuals with overweight undergoing weight loss.Trial registration: ClinicalTrials.gov identifier: NCT02962583.


Lacticaseibacillus rhamnosus , Probiotics , Adult , Humans , Overweight , Lacticaseibacillus , Feeding Behavior , Probiotics/therapeutic use , Double-Blind Method , Weight Loss
12.
Sci Rep ; 12(1): 16517, 2022 10 03.
Article En | MEDLINE | ID: mdl-36192578

Increasing evidence suggests that the intestinal microbiota composition could play a role in specific pathologies such as hypertension, obesity and diabetes. This study aims to demonstrate that the intestinal microbiota modulated by a diet creating dysbiosis increased the size of the myocardial infarction and that probiotics could attenuate this effect. To do this, microbiota transplants from rats fed a dysbiotic or non-dysbiotic diet in the presence or absence of probiotics were performed for 10 days on rats whose microbiota had been previously suppressed by antibiotic therapy. Then, the anterior coronary artery of the transplanted rats was occluded for 30 min. Infarct size was measured after 24 h of reperfusion, while signaling pathways were evaluated after 15 min of reperfusion. Intestinal resistance, plasma concentration of LPS (lipopolysaccharides), activation of NF-κB and Akt and composition of the microbiota were also measured. Our results demonstrate a larger infarct size in animals transplanted with the dysbiotic microbiota without probiotics compared to the other groups, including those that received the dysbiotic microbiota with probiotics. This increase in infarct size correlates with a higher firmicutes/bacteroidetes ratio, NF-kB phosphorylation and plasma LPS concentration, and a decrease in intestinal barrier resistance and Akt. These results indicate that dysbiotic microbiota promotes an increase in infarct size, an effect that probiotics can attenuate.


Microbiota , Myocardial Infarction , Probiotics , Animals , Anti-Bacterial Agents , Dysbiosis , Lipopolysaccharides , Myocardial Infarction/pathology , Myocardial Infarction/therapy , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt , Rats
13.
Front Microbiol ; 13: 980989, 2022.
Article En | MEDLINE | ID: mdl-36246229

Certain lactic acid bacteria (LAB) are associated with immune modulatory activities including down-regulation of pro-inflammatory gene transcription and expression. While host antigen-presenting cells (APCs) and intestinal epithelial cells (IEC) can interact directly with both pathogenic and commensal bacteria through innate immune pattern recognition receptors, recent evidence indicates indirect communication through secreted molecules is an important inter-domain communication mechanism. This communication route may be especially important in the context of IEC and APC interactions which shape host immune responses within the gut environment. We have previously shown that the Lacticaseibacillus rhamnosus R0011 secretome (LrS) dampens pro-inflammatory gene transcription and mediator production from Tumor Necrosis Factor-α and Salmonella enterica serovar Typhimurium secretome (STS)-challenged HT-29 IECs through the induction of negative regulators of innate immunity. However, many questions remain about interactions mediated through these bacterial-derived soluble components and the resulting host immune outcomes in the context of IEC and APC interactions. In the present study, we examined the ability of the LrS to down-regulate pro-inflammatory gene transcription and cytokine production from STS-challenged T84 human IEC and THP-1 human monocyte co-cultures. Cytokine and chemokine profiling revealed that apically delivered LrS induces apical secretion of macrophage inhibitory factor (MIF) and down-regulates STS-induced pro-inflammatory mediator secretion into the apical and basolateral chambers of the T84/THP-1 co-culture. Transcriptional profiling confirmed these results, as the LrS attenuated STS challenge-induced CXCL8 and NFκB1 expression in T84 IECs and THP-1 APCs. Interestingly, the LrS also reversed STS-induced damage to monolayer transepithelial resistance (TER) and permeability, results which were confirmed by ZO-1 gene expression and immunofluorescence visualization of ZO-1 expression in T84 IEC monolayers. The addition of a MIF-neutralizing antibody abrogated the ability of the LrS to reverse STS-induced damage to T84 IEC monolayer integrity, suggesting a novel role for MIF in maintaining IEC barrier function and integrity in response to soluble components derived from LAB. The results presented here provide mechanistic evidence for indirect communication mechanisms used by LAB to modulate immune responses to pathogen challenge, using in vitro approaches which allow for IEC and APC cell communication in a context which more closely mimics that which occurs in vivo.

14.
Compr Psychoneuroendocrinol ; 11: 100147, 2022 Aug.
Article En | MEDLINE | ID: mdl-35967925

Exposure to stress during critical periods of development-such as puberty-is associated with long-term disruptions in brain function and neuro-immune responsivity. However, the mechanisms underlying the effect of stress on the pubertal neuro-immune response has yet to be elucidated. Therefore, the objective of the current study was to investigate the effect antimicrobial and lipopolysaccharide (LPS) treatments on acute immune responsivity in pubertal male and female mice. Moreover, the potential for probiotic supplementation to mitigate these effects was also examined. 240 male and female CD1 mice were treated with one week of antimicrobial treatment (mixed antimicrobials or water) and probiotic treatment (L. rhamnosis R0011 and L. helveticus R0052 or L. helveticus R0052 and B. longum R0175) or placebo at five weeks of age. At six weeks of age (pubertal stress-sensitive period), the mice received a single injection of LPS or saline. Sickness behaviours were assessed, and mice were euthanized 8 h post-injection. Brain, blood, and intestinal samples were collected. The results indicated that the antimicrobial treatment reduced sickness behaviours, and potentiated LPS-induced plasma cytokine concentrations and pro-inflammatory markers in the pre-frontal cortex (PFC) and hippocampus, in a sex-dependent manner. However, probiotics reduced LPS-induced plasma cytokine concentrations along with hippocampal and PFC pro-inflammatory markers in a sex-dependent manner. L. rhamnosis R0011 and L. helveticus R0052 treatment also mitigated antimicrobial-induced plasma cytokine concentrations and sickness behaviours. These findings suggest that the microbiome is an important modulator of the pro-inflammatory immune response during puberty.

15.
Brain Sci ; 12(6)2022 Jun 14.
Article En | MEDLINE | ID: mdl-35741667

Recent studies have shown promise for the use of probiotics in modulating behaviour through the microbiota-gut-brain axis. In the present study, we assessed the impact of two probiotic strains in mitigating autism-related symptomology in the BTBR T+ Itpr3tf/J mouse model of autism spectrum disorder (ASD). Male juvenile BTBR mice were randomized into: (1) control, (2) Lr probiotic (1 × 109 CFU/mL Lacticaseibacillus rhamnosus HA-114), and (3) Ls probiotic groups (1 × 109 CFU/mL Ligilactobacillus salivarius HA-118) (n = 18-21/group), receiving treatments in drinking water for 4 weeks. Gut microbiota profiling by 16S rRNA showed Lr, but not Ls supplementation, to increase microbial richness and phylogenetic diversity, with a rise in potential anti-inflammatory and butyrate-producing taxa. Assessing serum and brain metabolites, Lr and Ls supplementation produced distinct metabolic profiles, with Lr treatment elevating concentrations of potentially beneficial neuroactive compounds, such as 5-aminovaleric acid and choline. As mitochondrial dysfunction is often observed in ASD, we assessed mitochondrial oxygen consumption rates in the prefrontal cortex and hippocampus. No differences were observed for either treatment. Both Lr and Ls treatment reduced behavioural deficits in social novelty preference. However, no changes in hyperactivity, repetitive behaviour, and sociability were observed. Results show Lr to impart positive changes along the microbiota-gut-brain axis, exhibiting beneficial effects on selected behaviour, gut microbial diversity, and metabolism in BTBR mice.

16.
JCI Insight ; 7(12)2022 06 22.
Article En | MEDLINE | ID: mdl-35730569

Infantile spasms syndrome (IS) is a devastating early-onset epileptic encephalopathy associated with poor neurodevelopmental outcomes. When first-line treatment options, including adrenocorticotropic hormone and vigabatrin, are ineffective, the ketogenic diet (KD) is often employed to control seizures. Since the therapeutic impact of the KD is influenced by the gut microbiota, we examined whether targeted microbiota manipulation, mimicking changes induced by the KD, would be valuable in mitigating seizures. Employing a rodent model of symptomatic IS, we show that both the KD and antibiotic administration reduce spasm frequency and are associated with improved developmental outcomes. Spasm reductions were accompanied by specific gut microbial alterations, including increases in Streptococcus thermophilus and Lactococcus lactis. Mimicking the fecal microbial alterations in a targeted probiotic, we administered these species in a 5:1 ratio. Targeted probiotic administration reduced seizures and improved locomotor activities in control diet-fed animals, similar to KD-fed animals, while a negative control (Ligilactobacillus salivarius) had no impact. Probiotic administration also increased antioxidant status and decreased proinflammatory cytokines. Results suggest that a targeted probiotic reduces seizure frequency, improves locomotor activity in a rodent model of IS, and provides insights into microbiota manipulation as a potential therapeutic avenue for pediatric epileptic encephalopathies.


Gastrointestinal Microbiome , Spasms, Infantile , Animals , Anticonvulsants/therapeutic use , Humans , Seizures/drug therapy , Spasm/drug therapy , Spasms, Infantile/drug therapy , Syndrome
17.
Cell Host Microbe ; 30(5): 696-711.e5, 2022 05 11.
Article En | MEDLINE | ID: mdl-35550672

Probiotics are increasingly administered to premature infants to prevent necrotizing enterocolitis and neonatal sepsis. However, their effects on gut microbiome assembly and immunity are poorly understood. Using a randomized intervention trial in extremely premature infants, we tested the effects of a probiotic product containing four strains of Bifidobacterium species autochthonous to the infant gut and one Lacticaseibacillus strain on the compositional and functional trajectory of microbiome. Daily administration of the mixture accelerated the transition into a mature, term-like microbiome with higher stability and species interconnectivity. Besides infant age, Bifidobacterium strains and stool metabolites were the best predictors of microbiome maturation, and structural equation modeling confirmed probiotics as a major determinant for the trajectory of microbiome assembly. Bifidobacterium-driven microbiome maturation was also linked to an anti-inflammatory intestinal immune milieu. This demonstrates that Bifidobacterium strains are ecosystem engineers that lead to an acceleration of microbiome maturation and immunological consequences in extremely premature infants.


Gastrointestinal Microbiome , Probiotics , Bifidobacterium , Ecosystem , Humans , Infant , Infant, Extremely Premature , Infant, Newborn , Inflammation
18.
Biochim Biophys Acta Mol Basis Dis ; 1868(9): 166446, 2022 09 01.
Article En | MEDLINE | ID: mdl-35589071

A growing body of evidence supports a role of the gut microbiota in regulating diverse physiological processes, including neural function and metabolism via the gut-brain axis. Infantile spasms syndrome is an early-onset epileptic encephalopathy associated with perturbed brain mitochondrial bioenergetics. Employing a neonatal rat model of infantile spasms, mitochondria respirometry and biochemical analyses, the present study reveals that gut microbiota manipulation by diet, antibiotics and probiotics have the potential to enhance hippocampal mitochondrial bioenergetics. Although preliminary in nature, our data reveal that microbial manipulation that regulates brain mitochondrial function may be a novel strategy for the treatment of epileptic disorders.


Epilepsy , Spasms, Infantile , Animals , Energy Metabolism , Epilepsy/metabolism , Epilepsy/therapy , Hippocampus/metabolism , Humans , Mitochondria/metabolism , Rats
19.
Microorganisms ; 10(2)2022 Jan 29.
Article En | MEDLINE | ID: mdl-35208773

2'-fucosyllactose (2'FL) is one of the most abundant oligosaccharides in human milk, with benefits on neonatal health. Previous results point to the inability of the fecal microbiota from some infants to ferment 2'FL. We evaluated a probiotic formulation, including the strains Lactobacillus helveticus Rosell®-52 (R0052), Bifidobacterium longum subsp. infantis Rosell®-33 (R0033), and Bifidobacterium bifidum Rosell®-71 (R0071), individually or in an 80:10:10 combination on the microbiota and 2'FL degradation. Independent batch fermentations were performed with feces from six full-term infant donors of two months of age (three breastfed and three formula-fed) with added probiotic formulation or the constituent strains in the presence of 2'FL. Microbiota composition was analyzed by 16S rRNA gene sequencing. Gas accumulation, pH decrease and 2'FL consumption, and levels of different metabolites were determined by chromatography. B. bifidum R0071 was the sole microorganism promoting a partial increase of 2'FL degradation during fermentation in fecal cultures of 2'FL slow-degrading donors. However, major changes in microbiota composition and metabolic activity occurred with L. helveticus R0052 or the probiotic formulation in cultures of slow degraders. Further studies are needed to decipher the role of the host intestinal microbiota in the efficacy of these strains.

20.
EBioMedicine ; 76: 103838, 2022 Feb.
Article En | MEDLINE | ID: mdl-35148983

BACKGROUND: Infantile spasms syndrome (IS) is a type of epilepsy affecting 1.6 to 4.5 per 10,000 children in the first year of life, often with severe lifelong neurodevelopmental consequences. Only two first-line pharmacological treatments currently exist for IS and many children are refractory to these therapies. In such cases, children are treated with the ketogenic diet (KD). While effective in reducing seizures, the diet can result in dyslipidemia over time. METHODS: Employing a neonatal Sprague-Dawley rat model of IS, we investigated how the KD affects hepatic steatosis and its modulation by a defined probiotic blend. A combination of multiple readouts, including malondialdehyde, fatty acid profiles, lipid metabolism-related enzyme mRNA expression, mitochondrial function, histone deacetylase activity, cytokines and chemokines were evaluated using liver homogenates. FINDINGS: The KD reduced seizures, but resulted in severe hepatic steatosis, characterized by a white liver, triglyceride accumulation, elevated malondialdehyde, polyunsaturated fatty acids and lower acyl-carnitines compared to animals fed a control diet. The KD-induced metabolic phenotype was prevented by the co-administration of a blend of Streptococcus thermophilus HA-110 and Lactococcus lactis subsp. lactis HA-136. This probiotic blend protected the liver by elevating pAMPK-mediated signaling and promoting lipid oxidation. The strains further upregulated the expression of caspase 1 and interleukin 18, which may contribute to their hepatoprotective effect in this model. INTERPRETATION: Our results suggest that early intervention with probiotics could be considered as an approach to reduce the risk of hepatic side effects of the KD in children who are on the diet for medically indicated reasons. FUNDING: This study was funded by the Alberta Children's Hospital Research Institute and Mitacs Accelerate Program (IT16942).


Diet, Ketogenic , Epilepsy , Probiotics , AMP-Activated Protein Kinases/metabolism , Animals , Diet, Ketogenic/adverse effects , Epilepsy/metabolism , Humans , Liver/metabolism , Rats , Rats, Sprague-Dawley
...